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Polymer Science 2024/25

Exercise 8 - Solution

1. The shear storage compliance (/1) vs log (@) curves of polyoctyl methacrylate at
different T are superimposable. For a reference temperature T, = 100 °C, the horizontal
displacements, ar, necessary to carry out such a superposition are given in Table 1.

Show that this data can be described by the empirical WLF-equation. What are the values
of C1 and C2?

The formula is valid, if (for example) (T - To)/log (ar) vs. T - T, is a straight line.
From the slope obtained after linear regression of the given data, we can
deduce €1 = 7.55 and from the interception with the y-axis, 2 = 226 K.
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Note that the WLF implicitly assumes that the polymer’s response to stress (or
strain) depends on a single dominant relaxation time across the entire
frequency range, at least within the relevant temperature range for the
experiment. In reality, polymers may exhibit multiple relaxation processes
(such as local motions, segmental motions, and chain motions), each associated
with different relaxation times. However, above the glass transition
temperature and in the rubbery plateau region, the polymer’s viscoelastic
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behavior is often dominated by a single characteristic relaxation time, making
the WLF equation an effective model for time-temperature superposition.

If the polymer’s behavior depends on several relaxation times that have the
same temperature dependence, the time-temperature superposition remains
valid, and the shifts applied to the curves for different temperatures will align.
However, if this is not the case, the shape of the transitions (e.g. modulus or
compliance curves) will change with temperature, and the superposition will
no longer work as expected. This breakdown occurs because different
relaxation processes will shift differently, distorting the superposition.
In practice, the time-temperature superposition using the WLF equation is
typically valid for temperature between T; and T; + 50 K, where the polymer
exhibits primarily one dominant relaxation process. Outside this temperature
range, particularly at lower temperature near or below T, the behavior may
become more complex, and the WLF equation may not adequately describe the
material’s dynamics.

2. The WLF equation can be used to calculate the melt viscosity changes with temperature.
Suppose a polymer has a glass transition temperature of 0 °C. At 40 °C, it has a melt
viscosity n = 2.5 - 10* Pa s. What will its viscosity be at 50 °C?

The melt viscosity is proportional to the relaxation time (see Slide 137). Hence:

(m) 17.44- (T, —T,)
log =

ny) 516+ (T, —T,)

log, = log(2.5 - 10%) + 17.44- (313 -273) 15 014
0819 = lo8l: 51.6 + (313 — 273)

Polymer often have a melt viscosity near 1012 Pa s at their glass transition
temperature (see the definition on Slide 121). The viscosity at 50 °C is
calculated accordingly:

o yoia 1744 (323-273)
087z = & 51.6 + (323 —273)

logn, ~ 2.70-103 Pas

Thus, a 10 °C increase in temperature has decreased the melt viscosity by
approximately one order of magnitude.
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3. Inarelaxation test, a constant strain is applied and we look at the evolution of the stress
as a function of time. In shear and for an applied strain, j, for example, we can write

o =Gy

where G(t) is the relaxation modulus. According to the phenomenological models
(springs and dashpot) generalized for a linear viscoelastic material

G(t) = Go + X1 Ge™t/™ (1)

where the parameters G» and G; are adjustable (within the limit of an infinite number of
elements, the Gi can be replaced by a continuous function, the relaxation time spectrum,
and the sum by an integral).

In Rouse's model for a dilute solution of N, chains per unit volume, each containing n
bonds, the expression for G(t) becomes

=C

Em2r? n?
e 6m2p2kT p?’

m
G(t) = N, kT z et/

p=1

p=12,..
and C is a constant, provided that m >> p, and m >> 1.

i)  Whatdo m, p, £ and 2 mean? Why is the effective value of G» equal to 0 in this
case?

Rouse's model consists of a chain of n bonds of length I divided into m - 1
segments per m "beads” (including two at each end of the chain) which
interact with the solvent, so that the force on the ith ball at the position 7 is
given by
_ . an;
f=87

where ¢ is a friction coefficient. So, each segment contains n/(m - 1) bonds
and rs?, the mean square distance of such a chain segment, is
n n

= lzz—lz
s T m

assuming that m >> 1 and that it is a freely jointed chain. Finally, p defines
the chain length characteristic of each relaxation mode, that is, the number
of segments involved in the p mode is therefore equal to n/p. p = 1 denotes
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the relaxation mode involving the whole chain, p = 2 half chain lengths, p = 3
a third of the chain, etc.

In the long-time limit (as t —» o), each term in the sum approaches zero
because the exponential decay becomes negligibly small for large t. This
means that the stress response eventually vanishes as the system reaches
equilibrium. Thus, in the long-time limit, the relaxation modulus G«, which
represents the final steady-state stress after which all relaxation processes
have occurred is zero.

ii)  If the monomeric friction coefficient &, = né/m, show that

Son”L" f > 1
T, & ————, or m ,
P 6m2p2kT p
and therefore, that the maximum relaxation time, the "Rouse relaxation time", is
proportional to M2.

_ ¢m?ry  om? <n€0)<n_lz) &,n?l?

e 6m2p2kT — 6m2p2kT\m )\ m - 6m2p2kT

The mass of the chain is equal to nM;, and the Rouse relaxation time which
corresponds to p = 1 is given by tr & M2, therefore.

iii) Draw schematically the evolution of o/NwkT as a function of t/z1 for the
component of G(t) which corresponds to p = 1 (this is the slowest mode of
relaxation). Add the contributions that correspond to p = 2 and 3 to the same
diagram. In general, what can we say about the contribution to the stress of fast
relaxation modes, when t > t1?

According to the expression for G(t),

¢ m
U( ) — e—t/‘rp

VONka -
p=1

and we must therefore plot o(t)/y(N,,kT as a function of t/t1, which is a
simple exponential decrease.
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1
B m .
G@t) = NkaZ e
p=1
2 3 4
tlt

The contributions of the terms corresponding to comparably fast relaxation
modes decrease relatively quickly, so the contribution to the stress of the fast
relaxation modes becomes negligible when £ > 11

iv) These expressions are valid for relatively long times (if we ignore the
hydrodynamic effects related to the solvent), but one meets problems with very
short times, where one must take the contributions of modes corresponding to
high p into account. Indeed, the choice of m, which defines the maximum value of
p, is arbitrary, but does the model remain reasonable when m approaches n?

We see that we can ignore the contributions of high p terms if t >> 1. In other
words, if we want to model the response to short ¢, it is necessary to include
terms corresponding to sufficiently high p so that the condition t >> 7, is
always respected. But if p and therefore m are too high, we reduce the
number of bonds in each segment too much, so that we cannot apply the
theory on rubber elasticity (which admits long chains). Indeed, if m tends to
n, we end up having subchains containing n/(m-1) = 1 bond! So, this model
does not work for too short times.

v)  Suppose that 11 = oo and that t, = 0 for p > 1. Write the resulting expression for G(t).
What do you notice? Interpret this result.

m m
G(t) = N,,kTe t/* + NkaZ et/ = N, kT + NkaZ e~t/Tp
p=2 p=2

For t > 0, the contributions from the higher Rouse modes (p > 1) decay
instantaneously to zero because their relaxation times are 1, = 0.
Consequently, these modes do not contribute to the shear modulus.
Meanwhile, the longest relaxation time, t1 = 00, implies that the material does
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not relax in response to stress in the first mode, which corresponds to the
overall motion of the polymer chain (e.g., the movement of the two ends of
the chain). Therefore, only the first mode contributes to the shear modulus,
and the system behaves as if it has a constant, time-independent modulus
G = NmkT.

This result is reminiscent of elastomers, where crosslinks between polymer
chains prevent full relaxation. For elastomers, the shear modulus G is
expressed as G = NKT, where N is the number of crosslinks per unit volume.
In the present model, we simulate a system where all polymer chains are
crosslinked at their ends, which prevents the relaxation of the overall chain
motion (mode p = 1).

By eliminating the contributions from modes with p > 1, we assume the chain
can change its conformation freely and instantaneously, except for the
overall motion (mode p = 1) which is blocked. This is a key feature of
elastomeric behavior, where the material’s elasticity arises from the
connectivity (crosslinking) between polymer chains, not from the intrinsic
relaxation properties of the individual chains. Note that the absence of
intermolecular forces is one of the assumptions underlying elastomeric
behavior.

This model here is particularly valid for an amorphous polymer with M < 2M.
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